Влияние света на развитие растений

Влияние светового спектра на развитие растений

Вы когда-нибудь использовали лампы для выращивания ваших растений? Если это так, то вы, вероятно, были поражены влиянием света на их развитие. Эта статья расскажет Вам гораздо больше о влиянии света на развитие растений. Как мы увидим, развитие растений действительно отличается от роста растений. Мы объясним Вам принципы работы света и его взаимодействия с растениями, а также дадим несколько практических советов. Выбор правильной лампы может иметь огромное значение для качества и количества вашего урожая.


Все знают, что растение нуждается в свете, чтобы расти посредством фотосинтеза, процесса, который включает фиксацию энергии и производство сахара. Но помимо обеспечения энергией, свет также играет ключевую роль во многих других растительных процессах, таких как фотоморфогенез и фотопериодизм. На все эти процессы влияет световой спектр, то есть распределение света по электромагнитному спектру. Чтобы объяснить различные реакции растений на свет, нам сначала нужно подумать о самом явлении света.

Принцип света и его спектр

Свет - это форма излучения, которая принимает форму электромагнитных волн, проходящих через воздух или вакуум. Поэтому его можно описать в терминах трех физических свойств: интенсивности (или амплитуды), частоты (или длины волны) и направления колебаний (поляризации). Все возможные формы электромагнитного излучения можно описать, поместив их в электромагнитный спектр (рис.1)

Свет в форме электромагнитных волн описывается электромагнитным спектром. Наиболее важным качеством света для растений является его длина волны или содержание энергии; чем короче длина волны, тем выше содержание энергии.

Когда мы описываем электромагнитный или световой спектр, лучше говорить о длине волны, чем о цвете. Это связано с тем, что видимый свет для человека составляет лишь небольшую часть светового спектра в целом, а именно диапазон длин волн от 400 до 700 нанометров (Нм, что составляет 10-9 м).

Как видно из рисунка 1, это очень маленький диапазон. На самом деле, это составляет менее 1 процента от общего спектра. Фотосинтетически активное излучение, или плотность потока фотосинтетических фотонов (ППФФ), - это диапазон света, который может быть использован растениями для фотосинтеза. Однако, поскольку ППФФ является суммированием всех фотонов в диапазоне 400-700 Нм, два очень разных спектральных распределения могут иметь один и тот же ППФФ. Это означает, что между ППФФ и спектральным распределением нет однозначной связи. Это также означает, что при сравнении источников света мы должны учитывать данные спектрального распределения, а также ППФФ.

ППФФ свет выражается в мкмоль /м2 / С и говорит нам, сколько световых фотонов достигнет заданной площади поверхности (m 2 ) в заданный промежуток времени (секунда). Для иллюстрации: большинству растений требуется минимум 30-50 мкмоль /м2 / с ППФФ, чтобы оставаться в живых.

Как растение чувствует свет

Свет не только обеспечивает фотосинтез энергией, но и служит источником информации для растений. Различные световые спектры дают растению представление об окружающей среде и, следовательно, о том, как оно должно выживать и, надеюсь, процветать и размножаться. В этом смысле состав света так же важен, как и общее количество света, используемого для фотосинтеза. Световой спектр в диапазоне от 300 до 800 Нм вызывает реакцию развития растения. Кроме того, известно, что ультрафиолетовый и инфракрасный (ИК) свет играет определенную роль в морфогенезе растений.

Растение получает информацию от света, который достигает его с помощью специальных пигментов, называемых фоторецепторами. Эти фоторецепторы чувствительны к различным длинам волн светового спектра.


Рисунок 2: растение получает информацию от света через три специальных фоторецептора: фототропины (фототроп), криптохромы и фитохромы. Первые два активны в ультрафиолетовом и синем свете, в то время как фитохромы реагируют на красный и Дальний красный свет.

Существует три группы фоторецепторов, см. Рисунок 2:

  •  Фототропины
  • Криптохромы
  • Фитохромы

Первые два фоторецептора – фототропины и криптохромы-активны в нижнем диапазоне длин волн (УФ (А) и синий). Очевидно, что эти два рецептора выполняют разные функции. Фототропины отвечают за фототропизм или движение растений, а также за движение хлоропластов внутри клетки в ответ на количество света. Фототропины-это то, что заставляет стебли изгибаться к свету и раскрываться устьице.

Криптохромы - это пигменты, которые чувствуют направление света. Ингибирование удлинения стебля регулируется криптохромами, а также функционированием устьиц, синтезом пигментов и отслеживанием солнца листьями растений. Другие фоторецепторы-фитохромы-чувствительны к красному и Дальнему красному свету. Существуют две формы фитохрома, Pfr и Pr, которые взаимодействуют между собой. Наибольшее влияние на фотоморфогенез оказывают фитохромы. Удлинение стебля, избегание тени, синтез хлорофилла и реакция цветения-все эти функции обычно контролируются фитохромом. 

Теперь, когда мы рассмотрели спектр света и фоторецепторы, ответственные за развитие растений, мы приходим к следующему вопросу: как мы можем применить эти знания в садоводстве? Что делает хороший спектр света для выращивания? Чтобы ответить на этот вопрос, нам нужно подумать о реакции растения на различные спектры света. Поскольку они попадают в основном под видимый свет, мы можем говорить о "цветах", начиная с самых важных для развития растений.

Синий свет (400-500 Нм)

Большая доля синего света оказывает тормозящее действие на удлинение клеток, что приводит к укорочению стеблей и утолщению листьев. И наоборот, уменьшение количества синего света приведет к увеличению площади поверхности листьев и удлинению стеблей. Слишком мало синего света негативно скажется на развитии растений. Многие растения нуждаются в минимальном количестве синего света, которое колеблется от 5 до 30 мкмоль/м2 /С для салата и перца до 30 мкмоль/м2 /С для сои.

Взаимодействие красного (600-700 Нм) и дальнего красного (700 – 800 Нм) света

Поскольку красный и Дальний красный свет имеют более высокую длину волны, они менее энергичны, чем синий свет. В сочетании с глубоким влиянием индуцированных красным цветом фитохромов на морфогенез растений для развития растений требуется относительно больше красного и дальнего красного света.

Две формы фитохрома, Pfr и Pr, играют важную роль в этом процессе. Поскольку красный и Дальний красный свет присутствуют в солнечном свете, растения в природе почти всегда будут содержать как ПФР, так и фитохромы. Растение воспринимает окружающую среду по соотношению между этими двумя формами; это называется фотостационарным состоянием фитохрома.

Фитохром Pr имеет пик поглощения света на длине волны 670 Нм. Когда Pr  поглощает красный свет, он преобразуется в форму Pfr. Форма Pfr действует наоборот – когда она поглощает далекий красный свет на пике 730 Нм, она преобразуется в форму Pr. Однако, поскольку молекулы Pfr также могут поглощать красный свет, некоторые из молекул Pfr преобразуются обратно в Pr. Из-за этого явления нет линейной зависимости между фотостационарным состоянием фитохрома и отношением красного к дальнему красному. Например, когда отношение красного к дальнему красному свету превышает два, в фотостационарным состоянием фитохрома практически нет реакции, и поэтому развитие растений не влияет. Поэтому лучше говорить о фотостационарным состоянием фитохрома, чем о соотношении красного и дальнего красного света.

Количество Pr и Pfr говорит растению, какой свет оно получает. Когда присутствует много Pr, это означает, что растение получает больше далекого красного света, чем красный свет. Когда красный свет меньше, противоположное преобразование (от Pr к Pfr) затруднено, что означает, что есть относительно больше Pr.


Рисунок 3: поскольку дальний красный свет в основном отражается от поверхности листьев, растение получает (относительно) больше этого света, когда оно заполнено соседними растениями. Чтобы избежать тени, растение отрастает более длинные стебли, так что он может поймать больше света.

В средах, в которых многие растения растут близко друг к другу, весь красный свет от солнца используется для процесса фотосинтеза (между 400 и 700 Нм), и большая часть дальнего красного света отражается растениями (>700 Нм). Большинство растений, особенно те, что находятся в тени, получат в этой ситуации гораздо больше красного, чем красный свет. Как следствие, Pr увеличивается, и когда это происходит, растение чувствует, что ему нужно больше света для фотосинтеза и удлинения стебля запускается (см. Рисунок 3). В результате получаются более высокие растения с большим расстоянием между междоузлиями и более тонким стеблем. Это явный пример реакции избегания тени, когда растения стремятся захватить больше света, чтобы выжить.

Более высокие растения могут поглощать больше красного света, что увеличивает количество форм ПФР. Это вызовет большее ветвление, меньшее расстояние между междоузлиями и меньший вертикальный рост, чтобы максимизировать поглощение света для фотосинтеза. В результате растения тратят меньше энергии на выращивание как можно более высоких растений и выделяют больше ресурсов на производство семян и расширение их корневой системы.

Влияние светового спектра на цветение

На цветение также влияют формы Pr и Pfr. Продолжительность времени, в течение которого ПФР является преобладающим фитохромом, - это то, что заставляет растение цвести. В основном, уровни ПФР говорят растению, как долго длится ночь (фотопериодизм). Когда солнце садится, количество далекого красного света превышает количество красного света. В темноте ночи формы ПФР медленно превращаются обратно в Pr. Долгая ночь означает, что есть больше времени для этого обращения. Следовательно, в конце ночного периода концентрация ПФР будет низкой, и это приведет к тому, что короткодневные растения зацветут.

Ограниченное влияние зеленого света (500-600 Нм) на развитие растений

Часто предполагается, что только синий и красный свет помогают растениям расти и развиваться, но это не совсем верно. Хотя большая часть зеленого света отражается от поверхности растения (именно поэтому мы, люди, видим растения зелеными), сам зеленый свет также может быть полезен для растения. Сочетание различных световых оттенков может привести к более высокому фотосинтезу, чем сумма его частей. Исследования, проведенные на листьях салата, также показали, что рост растений и биомасса увеличивались при добавлении 24% зеленого света к красно-синему светодиоду при сохранении равного уровня PAR (150 мкмоль/м2/ s) между двумя объектами. Это указывает на то, что даже зеленый свет может оказывать положительное влияние на рост растений.

Ультрафиолетовый свет (300-400 Нм)

Ультрафиолетовое излучение также оказывает влияние на растения, вызывая компактный рост с короткими междоузлиями и маленькими толстыми листьями. Однако слишком большое количество ультрафиолетового излучения вредно для растений, так как оно отрицательно влияет на ДНК и мембраны растения. Фотосинтез может быть затруднен слишком большим количеством ультрафиолетового излучения. Исследования показывают, что это происходит при значениях УФ-излучения выше 4 кДж/м2 /сут.

Вывод

Это возвращает нас к общему вопросу " что создает хороший спектр света для роста?"Довольно трудно дать общий ответ на этот вопрос, так как он в значительной степени зависит от типа растения и требований выращивания. Для "нормального" развития растений эти спецификации рекомендуются:

·         Большинство растений нуждается в минимальном количестве 30-50 мкмоль/м2 /с фотосинтетического света, чтобы остаться в живых

·         Требуется минимальное количество синего света, которое варьируется от 5 до 30 мкмоль / м2 /с

·         Требуется несколько большая доля красного и дальнего красного света, по сравнению с синим светом

·         Ограниченное количество ультрафиолетового излучения, менее 4 кДж/м2 /сут.

Также помните, что:

·         Более синий свет приведет к более коротким стеблям и более толстым листьям

·         Слишком большое количество дальнего красного света или неравный баланс с красным светом приведут к удлинению растений

·         Низкое отношение красного к дальнему красному и, следовательно, ограниченное количество красного света в начале ночи важно для цветения растений короткого дня

·         Далекий красный свет в одиночку не регулирует цветение

·         Зеленый свет благоприятен для фотосинтеза, хотя и не влияет на цветение или развитие растений

Комментарии